A Robust Credit Screening Model Using Categorical Data*
نویسندگان
چکیده
Motivated by an application in a public utility, the credit screening problem is re-examined from a decision theoretic viewpoint. The relationships between several alternative problem formulations are explored, and compared to the classical linear discriminant analysis (LDA) approach. Several mathematical programming based solution methods are proposed when the data are binary, and an efficient algorithm is developed for the case when the screening function must also have binary weights. Actual results of both the mathematical programming and LDA methods are presented and compared. The resulting mathematical programming rules are effective, robust, and flexible to administer. Practical advantages of the resulting "n out of N" type rules are discussed. These screening rules have been widely implemented by a major public utility and have resulted in substantial benefits to the utility and to the public. (FINANCE; INDUSTRIES, COMMUNICATIONS; STATISTICS; DECISION ANALYSIS; INTEGER PROGRAMMING-APPLICATIONS)
منابع مشابه
Credit rating of the bank legal customers by using the improved modified Russell model (Case study: the legal customers of Arak Melli Bank)
The most exchange volume in a country will be obtained through bank system whose correct function will have a determinant role in improving economic activities. Nowadays, the customer’s rating and accreditation subject has been considered more than before by the banks due to increase the volume of overdue claims and banks’ past over dues. One of the most important tools for controlling the bank...
متن کاملStock Evaluation under Mixed Uncertainties Using Robust DEA Model
Data Envelopment Analysis (DEA) is one of the popular and applicable techniques for assessing and ranking the stocks or other financial assets. It should be noted that in the financial markets, most of the times, the inputs and outputs of DEA models are accompanied by uncertainty. Accordingly, in this paper, a novel Robust Data Envelopment Analysis (RDEA) model, which is capable to be used in t...
متن کاملUsing the Hybrid Model for Credit Scoring (Case Study: Credit Clients of microloans, Bank Refah-Kargeran of Zanjan, Iran)
In any country, commercial banks lay the groundwork for economic growth by collecting national resources and capitals and allocating them to different economic sectors. Optimal allocation of resources is especially important in achieving this goal. Banks with an effective and dynamic system of customer assessment can efficiently allocate their resources to customers regardless of their geograph...
متن کاملA robust least squares fuzzy regression model based on kernel function
In this paper, a new approach is presented to fit arobust fuzzy regression model based on some fuzzy quantities. Inthis approach, we first introduce a new distance between two fuzzynumbers using the kernel function, and then, based on the leastsquares method, the parameters of fuzzy regression model isestimated. The proposed approach has a suitable performance to<b...
متن کاملOutlier Analysis of Categorical Data using NAVF
Introduction Outlier analysis is an important research field in many applications like credit card fraud, intrusion detection in networks, medical field .This analysis concentrate on detecting infrequent data records in dataset. Most of the existing systems are concentrated on numerical attributes or ordinal attributes .Sometimes categorical attribute values can be converted into numerical valu...
متن کامل